Efficient and Accurate Candidate Generation for Grasp Pose
Por um escritor misterioso
Last updated 09 novembro 2024
Recently, a number of grasp detection methods have been proposed that can be used to localize robotic grasp configurations directly from sensor data without estimating object pose. The underlying idea is to treat grasp perception analogously to object detection in computer vision. These methods take as input a noisy and partially occluded RGBD image or point cloud and produce as output pose estimates of viable grasps, without assuming a known CAD model of the object. Although these methods generalize grasp knowledge to new objects well, they have not yet been demonstrated to be reliable enough for wide use. Many grasp detection methods achieve grasp success rates (grasp successes as a fraction of the total number of grasp attempts) between 75% and 95% for novel objects presented in isolation or in light clutter. Not only are these success rates too low for practical grasping applications, but the light clutter scenarios that are evaluated often do not reflect the realities of real world grasping. This paper proposes a number of innovations that together result in a significant improvement in grasp detection performance. The specific improvement in performance due to each of our contributions is quantitatively measured either in simulation or on robotic hardware. Ultimately, we report a series of robotic experiments that average a 93% end-to-end grasp success rate for novel objects presented in dense clutter.
Robust grasping across diverse sensor qualities: The GraspNet
Frontiers Robotics Dexterous Grasping: The Methods Based on
Frontiers Learning-based robotic grasping: A review
Robotics, Free Full-Text
Left: A grasp g is defined by its Cartesian position (x, y, z
Frontiers Robotics Dexterous Grasping: The Methods Based on
Grasp Pose Detection in Point Clouds - Andreas ten Pas, Marcus
3D Grasp Pose Generation from 2D Anchors and Local Surface
Grasp pose representation in the camera frame
Vision-based robotic grasping from object localization, object
Recomendado para você
-
Candidate-SE - Secretaria Nacional de Organização do PT09 novembro 2024
-
Candidate-se às vagas da Fundação Mudes de qualquer lugar09 novembro 2024
-
Candidate-se a formador(a) - Associação Educativa para o09 novembro 2024
-
Candidate-se e participe do Processo Eleitoral para escolha dos09 novembro 2024
-
Se é interno de MGF ou jovem MF candidate-se às bolsas WONCA09 novembro 2024
-
Eleições SBCD 2023: candidate-se!09 novembro 2024
-
Candidate-se agora - Kemira09 novembro 2024
-
Candidate-se à realeza da Festa em comemoração 27º Aniversário do09 novembro 2024
-
Novo Bauhaus Europeu Candidate-se até 28 de fevereiro aos09 novembro 2024
-
Se Candidate, Mulher! muda marca, lança SaaS e abre rodada com09 novembro 2024
você pode gostar
-
Cinemas de Rio Preto fazem pré-estreia de Pânico 6! - PORTAL DO INTERIOR09 novembro 2024
-
Bebê Reborn Em Fortaleza09 novembro 2024
-
Running News Archives - Run Tucson09 novembro 2024
-
Subway Surfers 3.10.0 (arm64-v8a + arm-v7a) (Android 5.0+) APK09 novembro 2024
-
Yujiro vs Baki!! (Part 8) 'Perfect Counter' - Baki 'Son of Ogre09 novembro 2024
-
Counter Strike 2.009 novembro 2024
-
Lemmings 2: The Tribes - release date, videos, screenshots09 novembro 2024
-
fuckyou #supreme #bartsimpson - Bart Simpson Sticker Fuck You, HD09 novembro 2024
-
TSM signed Hikaru Nakamura, one of the biggest chess streamers on09 novembro 2024
-
EATING PIKA PIKA NO MI!!!, GRAND PIECE ONLINE09 novembro 2024