Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based Molecular Aggregates

Por um escritor misterioso
Last updated 23 novembro 2024
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
Excimer Formation in Carboxylic Acid-Functionalized Perylene Diimides Attached to Silicon Dioxide Nanoparticles. - Abstract - Europe PMC
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
Luminescence in Crystalline Organic Materials: From Molecules to Molecular Solids - Gierschner - 2021 - Advanced Optical Materials - Wiley Online Library
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based Molecular Aggregates
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based Molecular Aggregates
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based Molecular Aggregates
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
PDF) Spectroscopic Demonstration of Exciton Dynamics and Excimer Formation in a Sterically Controlled Perylene Bisimide Dimer Aggregate
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
Safeguarding long-lived excitons from excimer traps in H-aggregated dye-assemblies - Chemical Science (RSC Publishing) DOI:10.1039/D0SC01784A
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
Figure 2 from Direct Observation of Ultrafast Excimer Formation in Covalent Perylenediimide Dimers Using Near-Infrared Transient Absorption Spectroscopy.
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
Luminescence in Crystalline Organic Materials: From Molecules to Molecular Solids - Gierschner - 2021 - Advanced Optical Materials - Wiley Online Library
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based Molecular Aggregates
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
Exciton Dynamics and Self-Trapping of Carbocyanine J-Aggregates in Polymer Films
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
C, Free Full-Text
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
Perylene Diimide-Based Hj- and hJ-Aggregates: The Prospect of Exciton Band Shape Engineering in Organic Materials
Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based  Molecular Aggregates
Ultrafast Exciton Delocalization, Localization, and Excimer Formation Dynamics in a Highly Defined Perylene Bisimide Quadruple π-Stack

© 2014-2024 likytut.eu. All rights reserved.