Visualizing the gradient descent method

Por um escritor misterioso
Last updated 25 março 2025
Visualizing the gradient descent method
In the gradient descent method of optimization, a hypothesis function, $h_\boldsymbol{\theta}(x)$, is fitted to a data set, $(x^{(i)}, y^{(i)})$ ($i=1,2,\cdots,m$) by minimizing an associated cost function, $J(\boldsymbol{\theta})$ in terms of the parameters $\boldsymbol\theta = \theta_0, \theta_1, \cdots$. The cost function describes how closely the hypothesis fits the data for a given choice of $\boldsymbol \theta$.
Visualizing the gradient descent method
Why Visualize Gradient Descent Optimization Algorithms ?, by ASHISH RANA
Visualizing the gradient descent method
A Data Scientist's Guide to Gradient Descent and Backpropagation Algorithms
Visualizing the gradient descent method
How to visualize Gradient Descent using Contour plot in Python
Visualizing the gradient descent method
Gradient Descent Optimization – Towards AI
Visualizing the gradient descent method
Orange Data Mining - Visualizing Gradient Descent
Visualizing the gradient descent method
The Gradient: A Visual Descent
Visualizing the gradient descent method
Simplistic Visualization on How Gradient Descent works
Visualizing the gradient descent method
Visualizing Gradient Descent in 3D - Part 1 2022 - fast.ai Course Forums
Visualizing the gradient descent method
Gradient Descent With AdaGrad From Scratch
Visualizing the gradient descent method
Visualize the gradient descent of a cost function with its level circles -Python, by Joséphine Picot, Analytics Vidhya

© 2014-2025 likytut.eu. All rights reserved.